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ABSTRACT

Motion estimation is a field of great interest because of its many applications in

areas such as robotics and image coding. The optic flow method is one such scheme

which, although fairly accurate, is prone to error in the presence of noise. This thesis

describes the use of the reduced order model Kalman filter (ROMKF) in reducing errors in

displacement estimation due to degradation of the sequence. The implementation of

filtering and motion estimation algorithms on the SUN workstation is also discussed.

Results from preliminary testing were used to determine the degrees of freedom

available for the ROMKF in the SUN software. The tests indicated that increasing the state

to the left leads to slight improvement over the minimum state case. Therefore, the

software uses the minimum model, with the option of adding states to the left only.

The ROMKF was then used in conjunction with a hierarchical pel recursive motion

estimation algorithm. Applying the ROMK.F to the degraded displacements themselves

generally yielded slight improvements in cases with noise degradation and noise plus blur.

Filtering the images of the degraded sequence prior to motion estimation was less effective

in these cases. Both methods performed badly in the case of blur alone, resulting in

increased displacement errors. This is thought to be due in part to filter artifacts. Some

improvements were obtained by varying the filter parameters when filtering the

displacements directly. This result suggests that further study in varying f'dter parameters

may lead to better results.

The results of this thesis indicate that the ROMKF can play a part in reducing

motion estimation errors from degraded sequences. However, more work needs to be

done before the use of the ROMKF can be a practical solution.

vi



PART 1

Introduction

Estimating the motion of objects in a scene is a problem being widely researched

today. Motion estimation has a wide range of applications in the fields of image processing

and computer vision. For example, motion estimation can be used in image coding to

decrease the bandwidth needed to transmit an image sequence. In the area of robotics,

velocities of objects can be used for navigation and guidance purposes. In addition,

motion estimation can be valuable in the area of medical imaging in observing the motion

of the heart. Other uses include satellite weather tracking and traffic surveillance.

Motion estimation methods, as discussed in the survey by Aggarwal and

Nandhakumar [ 1], can be grouped into two basic categories: feature-based estimation,

and optic flow computation. In feature based estimation, a set of two-dimensional features

is first extracted, corresponding to three-dimensional object features in the scene.

Examples of such features are corners, occluding boundaries of surfaces, and boundaries

between areas of differing surface reflectivity. Next, inter-frame correspondence is

established between the features, with constraints based on assumptions about the motion,

such as rigid body motion. Finding such a correspondence is difficult, and only partial

solutions for simple situations have been developed. The resulting equations for the motion

are then solved using the observed displacements of the two-dimensional features.

The optic flow method consists of computing the velocity of each pixel in the

image, resulting in a two-dimensional field of instantaneous velocities. Unlike the feature-

based approach, optic flow calculations do not require that any feature correspondence be

established. Instead, changes in image brightness can be used to compute the optic flow.

It is also possible to use changes in variables other than brightness which result from



applying local operators such as contrast, entropy, or spatial derivatives. Many examples

of optic flow algorithms can be found in [1].

Once estimated, optic flow can be used to calculate depth, as in the paper by

Matthies, Szeliski, and Kanade [ 7] , in which a Kalman filtering approach is used to

estimate depth from motion, recursively refining the estimate over time. Another extension

of optic flow motion estimation is in the calculation of rigid body motion from depth and

optic flow, as in the paper by Ballard and Kimball [3]. In this case, optic flow and depth

information are used to compute the nine parameters which completely describe a rigid

body's motion in terms of the position, translational velocity, and rotational velocity of the

body's local coordinate origin.

The relative simplicity of the optic flow estimation as well as its extensions to

three-dimensional motion make it an attractive method for many applications. However,

as discussed by Aggarwal and Nandhukumar [1] , optic flow computation is prone to

error in the presence of noise. The computation of the optic flow depends on taking partial

derivatives of the image brightness values, and the evaluation of derivatives is a noise

enhancing process. Therefore, it is of value to investigate methods of decreasing the error

in motion estimation due to degradations of the images. It is also useful to have a software

tool with which these and other image processing methods can be implemented in a user-

friendly environment. This thesis explores the usage of the reduced order model Kalman

filter (ROMKF) in reducing motion estimation errors, and discusses the implementation of

the algorithms on the SUN workstation.

The ROMKF was developed by Angwin [2] to reduce the number of

computations needed to implement the Kalman filter in image restoration. Since many

motion estimation applications such as robotic navigation require real-time computations,

the ROMKF is a good choice because of its speed. In addition, the form of the ROMKF is



well suited to use in filtering the optic flow fields as well as the images of the sequences.

The development of the ROMKF is discussed in Part 2 of the thesis, as well as results of

preliminary studies on the optimum model/state sizes, which affected the final SUN

implementation. Part 3 discusses the motion estimation algorithm, and compares results of

filtering the sequences prior to the optic flow calculations to filtering the displacement fields

themselves. Finally, Part 4 presents conclusions and recommendations for further study.



PART 2

The ROMKF

2.1 Introduction

Images axe generally not perfect reproductions of the scenes they represent, but

rather axe degraded by the sensing process. For example, the image may be corrupted by

sensor noise, or blurred due to relative motion of the camera and object or camera

misfocus. Image restoration is concerned with recovering the original scene from the

degraded image by removing the degradation. Image restoration is therefore different from

image enhancement, which concentrates on extracting and accentuating certain features of

an image without regard to removing the degradation itself.

One image restoration method which has been developed from estimation theory

is the Kalman filter. The Kalman Filter is a recursive filter using a state variable

representation of the system, which in this case is an image. One difficulty with the

Kalman Filter implementation is the high order of the state vector that is required,

necessitating large amounts of memory and extensive computations. Consequently,

various algorithms have been developed to decrease the number of computations needed for

implementing the Kalman Filter in image restoration applications. For example, Woods

and Radewan [11] extended the Kalman filter to two dimensions, proposing the Reduced

Update Kalman Filter (RUKF). Another algorithm by Mahalanabis and Xue [6] uses a

two-dimensional Chandrasekhar filter, another vector Kalman filter. The ROMKF is a

scalar filter in which a lower order state vector is used to reduce the number of

computations required. The ROMKF has been shown to have comparable performance to

both the RUKF and the Chandrasekhar filter [2], using the minimum state and model

sizes. The purpose of this study was to vary the state and model sizes to see if an

improvement is possible over the minimum case.

4
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2.2 Theory

The ROMKF algorithm is based on an image model of the following form:

s(m,n) = _ Ckl(m,n)s(m - k,n - I)+ w(m,n),

k,IERI

(2.1)

where (re,n) refers to the pixel in the ruth row and nth column, s(m,n) is the original

image, Ckl(m,n) represent the model coefficients, w(m,n) is gaussian white noise

accounting for the error in the model, and R 1 is the nonsymmetric half plane (NSHP)

model support shown in figure 2.1. The observed, degraded image is modeled as the

output of a linear filter as follows:

r(m,n) = Z hij(m,n)s(m - i,n -j) + v(m,n) ,
lJER2

(2.2)

where r(m,n) is the observed de_aded image, s(m,n) is the original image from (2.1),

v(m,n) is measurement noise, and hij(m,n) represent the spatially varying degradation

point spread function (PSF) with support R 2.

The Kalman filter is a recursive spatial domain estimator which estimates the

original image s, given the observations r for each image pixel. The filter equations are

given in Appendix B. To use the Kalman filter, the models for s and r must be incorporated

into a state-space representation of the form:

x(m,n) = Cx(m - l,n) + Eu(m,n) + Dw(m,n)

r(m,n) = Hx(m,n) + v(m,n) .

(2.3)

(2.4)
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Figure 2.1: M! x M2 x M 3 NSHP Support

Here, x(m,n) is the state vector at pixel (m,n), u(rn,n) is a deterministic input, and C, D,

and H are system matrices. The terms r, v, and w are as previously defined. This

representation is a one-dimensional state-space difference equation, meaning there is one

direction of state propagation. In raster scan format, which is used in this algorithm,

horizontal propagation is used from left to right until a boundary is reached. At the

boundary, the vertical index is incremented, and the horizontal index is reset to the left

boundary.

In full-state Kalman image filtering, the state is defined as follows:

x(rn,n) = [ s(m,n), s(m - l,n) ..... s(1,n);

s(N,n- 1), s(N- l,n- 1) ..... s(1,n- 1);

..°_

s(N,n - M1), s(N - 1,n - M1), .... s(rn - M2,n -M 1) IT .

(2.5)
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Figure 2.2: Unreduced State Support

This definition applies to an image of N pixels in width that is scanned from left to right,

top to bottom. The state support is shown in figure 2.2. For this state representation, the

E matrix is the null matrix.

Using the state as defined above would require excessive computational effort, as

the state size is O(M1N). It was therefore proposed in [2] to reduce the size of the state

vector by using only those pixels required to represent the image models of (2.1) and (2.2).

To do this, it is necessary to make approximations for pixels just to the right of the M 1 x

M 2 x M 3 model support. This reduced order state vector, shown in figure 2.3, is as

follows:

x(m,n) = [ s(m,n), s(m - 1,n) ..... s(m - M 2 ,n);

s(rn - M2,n - I), s(m - M 2 + 1,n - 1) ..... s(m + M 3 + 1,n - M1);

...

s(m - M2,n - MI), s(m - M 2 + 1,n - M1) ..... s(m +M 3 + 1,n - MI)]T.

(2.6)
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Figure 2.3: ROM State Support

A major feature of the ROMKF is the treatment of the pixels in the state x(m,n)

which cannot be represented in terms of the shifted state x(m - 1,n). In the ROMKF, these

pixels are approximated by their most recent estimates, with the uncertainty represented in a

noise term. This is shown by the following equation:

s(m + M 3 + 1,. ) = s(m + M 3 + I,.) + w2(m,n) , (2.7)

where s(., .) is the most recent update of the pixel available at the time pixel (re,n) is

filtered. This approximation is included in the state equation as the deterministic input

u(m,n) from (2.3).
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2.3 Experimental Results

The ROMKF was applied to the cameraman image of size 128 by 128 pixels

which has been degraded by known blur and noise. The original image is shown in figure

2.4. Two different blur supports were used: a 1 x 5 linear blur, and a 3 x 3 two-

dimensional blur. These blur supports are shown in figure 2.5. Two cases for the added

noise were also used: 30 dB blurred SNR, and 40 dB blurred SNR, where blurred SNR

(BSNR) is given as:

blurred image variance
BSNRdB = 10log10 observation noise variance (2.8)

Figure 2.4: Original Cameraman Image
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The filter was then implemented using varied model supports and varied state supports as

shown in Appendix A. The model parameters were estimated using recursive least squares

parameter estimation on the original unblurred image before filtering. All software was

adapted from programs written by Angwin [2] and implemented on the Prime and

Michigan Terminal System mainframes.

.111 .111 .111

.III .III .III

.111 .111 .111

pixel m,n is in center

11121412111
(m,n)

Figure 2.5: Blur Supports Used

The results are presented in the form of the mean-square-error improvement, rl,

calculated in decibels in the following manner:

rid// = 101ogl0 Y.(s(m,n) - r(m,n))2
Y (s(m,n) - s(m,n))2 (2.9)
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The improvements are displayed in tables 2.1-2.4. These results show that increasing the

model size in either the vertical or right direction (M2 or M3) has little effect on filter

performance when comparing with the minimum model, minimum state case. Similarly,

extending the state support in these directions also has little effect. However, increasing

either the model or state support region in the left direction can improve the result. This is

most likely due to the increased smoothing arising from a larger update area.

Table 2.1: Results for 1 x 5 Blur with Model Size Varied

Case

I

2

3

4

5

6

7

8

9

Model Size

MlxM2xM3

lxlxl

Ixlx2

lxlx6

lx6xl

lx6x6

MSE Improvement rldB

30 dB noise 40 dB noise

4.75 10.60

4.78

4.88

5.01

5.11

10.68

10.76

12.81

12.97

2xlxl 4.75 9.97

2x2xl 4.85 9.74

2x2x2 4.83 9.72

3x3x3 4.36 6.52
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Table 2.2: Results for 1 x 5 Blur with State Size Varied

Case

I

4

5 5 - to left

6 10 - to left

7

8

9

10

11

12

13

Pixels added

I - to ri[ht

5 - to ri[ht

10 - to right

1 - to left

5 - right, 5 - left

• 10 - right, 10 - left

1 - vertically

lxlx2 model, extra

states

2x 1x2 model, extra

states

2x2x2 model, extra

states

lxlxl model, extra

states

MSE Improvement rla_

30 dB noise 40 dB noise

4.76 10.57

4.76 10.57

4.75 10.57

4.92 12.04

4.90

4.89

4.89

4.89

5.14

5.13

5.09

5.07

4.66

12.77

12.78

12.77

12.78

9.45

9.18

9.15

9.16

7.10
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Table 2.3: Results of 3 x 3 blur with Model Size Varied

Case

1

2
|

4

6

7

8

Model Size

M 1xM2xM3

lxlxl

1xlx2

lxlx6

lx6xl

1x6x6

MSE Improvement "qa_

30 dB noise 40 dB noise

2.47 5.04

2.46

2.76

3.63
i

3.66

5.04

4.88
i

5.99

6.07

2xlxl 2.63 4.88

2x2x2 2.65 4.95

3x3x3 1.72 2.17
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Table 2.4: Results for 3 x 3 Blur with State Size Varied

Case

1

2

Pixels Added

1 - to right ( 1 ,row)

5 - to right (1 row)

5 - to right (2 rows,)

1 - to left (3 rows)

MSE Improvement ride

30 dB noise 40 dB noise

2.47 5.04

2.61 5.04

2.39 4.82

4 3.36 5.72

5 5 - to left (3 rows) 3.63 6.27

6 5 - to left (1 row) 3.40 5.90

7 10 - to left (3 rows) 3.71 6.38

8 5 - to right (2 rows), 3.68 6.19

5 - to left (3 rows)

For the cases used, the maximum improvement was approximately two riB. This

was seen in the 1 x 5 blur, 40 dB noise case. The subjective improvement of these images

as determined by visual inspection was at most very slight; in most cases, improvement

was imperceptible. Examples of these restored images are compared with the degraded

image in figure 2.6. The mean-square improvement for the 30 dB noise case was less, and

the visual results were similar to the above cases. These slight improvements were

obtained at greater computational cost due to the added model parameters and/or states, as

compared with the lowest order 1 x 1 x 1 model with nine states.
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Figure 2.6: Comparison of Minimum State with Cases with Maximum

Improvement - 1 x 5 Blur, 40 dB BSNR

a. degraded image

c. 1 x6x 6model

b. minimum state

d. 10 pixels added to left

a b

c d
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In the case of the 3 x 3 blur, results were more significant. Although the mean-

square improvements over the minimum case were slightly less than those for the I x 5

blur, the visual results were much more apparent. The minimum state case had noticeably

more ringing artifacts in the lower spatial frequency areas of the background than did the

cases with the model and/or states extended to the left. The two noise cases exhibited

similar results. Examples of restored images arc shown in figure 2.7.

Therefore, it would seem that the choice of model and state size to use depends on

the type of blur. In the simpler one-dimensional I x 5 blur, the improvement obtained by

adding model parameters and/or states does not seem to merit the extra computations

required. However, for a more severe blur such as the 3 x 3 blur, the improvement may

justify use of the larger state. The choice depends on the particular situation requiring

filtering. For example, if speed is very important, it may be acceptable to use the lower

order state, sacrificing some image quality to satisfy time constraints.

2.4 SUN Implementation

Both the Image Processing Lab (IPL) and the Robotics and Automation Lab

(RAL) at Rensselaer Polytechnic Institute have purchased SUN workstations for use in

research. It was therefore an additional goal of this project to implement a user-friendly,

window-based image processing tool for use on the SUNs. The results of the above tests

were used in writing the software for the ROMKF part of the program.

The basis of the program is a public domain image processing program called

Imagetool, written at the National Center for Supercomputing Applications at the

University of Illinois by Norman and Song [9]. The original program, written in

Sunview, has utilities for displaying images, cutting and pasting parts of images,

zooming, colormap adjustment, graphing, and file transferral. The major modification was

to replace the file transfer option with a filter option containing programs
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Figure 2.7: Comparison of Minimum State with Cases with Maximum

Improvement - 3 x 3 Blur, 40 dB BSNR

a. degraded image

c. 1 x 6x 6model

b. minimum state a b

d. 5 pixels added to left (3 rows) c d
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for imagerestoration. Input is obtainedfrom theuserthroughvariouspop-upwindows,

activatm:l by menus or buttons.

Included in these utilities are the following:

- Least -squares parameter identification, with the option of bias compensation,

as suggested by Woods and Ingle [13].

- Degradation routines for adding known blur and noise.

- The ROMKF

- Motion estimation.

The routines for the ROMKF were adapted from those written by Angwin [2].

Due to the results of the state/model tests, the filter is set up for an image model of size 1 x

1 x 1, with the option of adding additional states to the left if desired. The motion

estimation programs were adapted from programs written by Naveen and Kim [5]. The

specific details of the motion estimation algorithm are given in Part 3.



| I

19

PART 3

Motion Estimation

3.1 Introduction

The optic flow algorithm used was one adapted from Netravali and Robbins [8]

by Woods and Naveen [12]. This method uses the pel recursive algorithm of Netravali and

Robbins [8] in a hierarchical (pyramid) structure. The use of pyramids in motion

estimation allows for the computation of large velocities which might not be detectable by

nonbeirarchical methods. In a pyramid-based algorithm, the image is subsampled, using

lower spatial frequencies to obtain the first velocity estimate which is then refined by the

use of higher and higher frequencies. The specifics of the method used here will now be

given.

3.2 Theory

The motion of an object can be represented by the following equation:

IN(X) = [N.I(X - _(X)) for all x, (3. I)

where IN.l and IN are frames N- I and N of the image sequence, x is the vector indicating

the position of the pixel in a frame, and 5(x) is its displacement. The goal of the motion

estimator is to determine the displacement _i(x). Here, the expression for the displacement

is derived in [8] through linear regression as the following iterative equation:

8(x) i+1 = 8(x) i- e .DFD(x, _(x) i ) .V IN.l(X - 8(x) i ), (3.2)
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where DFD is the displaced frame difference, and is given by

DFD(x, _(x)) = IN(x) - IN.t(x - _(x)) , (3.3)

the V is the gradient with respect to x, and i is the iteration count. The e can be taken to be

a constant, but for better performance, the following was used as suggested by Walker and

Rao [10] :

I
e - (3.4)

2.1VIN.I(x - 8(x)i)l 2

For this implementation, three iterations are run for each pixel. Bilinear interpolation is

used to compute the DFD for non-integral values of _i(x), and two adjacent pixels are used

to evaluate VI as follows:

x-component of VI = (Ib - Ia)/2

y-component of W = (Iu - 1/)/2,

(3.5)

(3.6)

where Ib and Ia are the two pixels before and after the current pixel, and Iu and It are the

upper and lower adjacent pixels.

As previously mentioned, the algorithm above can have poor performance at

higher velocities. Therefore, it is used in a quadrature mirror filter (QMF) pyramid. The

elements of a K level pyramid of an image IN can be represented as IN °, IN 1..... IN g1 and

IN/c, where IN° is the original image, IN 1 is subband 11 (low-low) of IN O, IN 2, is subband

11-11 of IN°, etc. So, the image at a given level of a pyramid is subband 11 of the image
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just below it. Therefore, IN K is the image with the least spatial frequencies. This is

illustrated in figures 3. I and 3.2.

o2

®

= subband 11 (low-low)

= subband 12 (low-high)

-- subband 21 (high-low)

= subband 22 (high-high)

Figure 3.1: Subbands Used in the QMF Pyramid

l N = IN 0

sub-

sample

subband 11 = IN 1 subband 11 = I2 to I/

subband 12 L ....
ii

subband 21

subband 22

sub-

sample

subband 12

subband 21

subband 22

Figure 3.2: Pyramid Construction
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Starting with the K-th level, the displacement 8(x) between IN and IN.t is

obtained using the pel recursive algorithm. Then this estimate is expanded to obtain a

coarse estimate which corresponds to the next level images which axe four times larger.

This coarse estimate is used as the initial estimate of motion between IN K'l and IN_t KI in

order to get the displacement at the K- I level. This process of ref'ming the initial estimate is

repeated until we get the displacement between the full resolution images IN 0 and IN.10.

In their algorithm, Woods and Naveen [12] also blur (lowpass filter) the

displacements at each pyramid level in order to remove noise caused by the pixel recursive

estimation. However, in this implementation, blurting of the displacements was not done

in order to observe the effect of the ROMKF alone.

3.2 Experimental Results

As described in the introduction, the main goal of this thesis is to examine the

results of applying the ROMKF to motion estimation of degraded sequences. The ROMKF

was used in two ways: to filter the degraded sequence prior to the motion estimation, and

to filter the displacement vectors resulting from unrestored sequences. Two types of image

sequences were used in the experiments: a set of computer-generated sequences with

known velocities, and a scanned image of a robot arm, moving with unknown velocity.

Each sequence consisted of two images. The artificial images were obtained using the

following equation from [8]:

l(x,t) = {

127 if IIRII > 100,

127(1 + e -'0511RII cos(2-n.[IRII )), otherwise,
(3.7)

where R = x - ( xo + Dt ), 127 is the back_ound intensity on a scale of 0 - 255, D is the

displacement of the pattern per frame, and I1.11denotes the Euclidian norm. The resulting
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imageisa seriesof alternatinglight anddarkconcentric rings with exponentially decreasing

radial intensity variation. The fu'st image (with zero displacement) is shown in figure 3.3.

Figure 3.3: Artificial Circle Image

Six velocities were used in generating artificial sequences: two, four, and ten pixels

per frame in the positive x direction only (to the fight), and two, four, and ten pixels per

frame in both the x and y directions (down and to the fight).

The robot arm sequence was obtained from the RPI robotics lab. The f'u'st image

of the sequence is shown in figure 3.4. The exact velocity is unknown. However, it is

uniform and estimated by visual inspection to be approximately four pixels per frame in the

x direction and twelve pixels per frame in the y direction (down and to the right).

Prior to implementing the motion estimation algorithm, tests were done to

determine the optimal number of pyramid levels for each velocity. This was determined

by calculating the mean-square-error between the second image of the sequence and a

prediction of the second image which was obtained using the displacements from the

motion estimation algorithm..The results, shown in table 3.1, show the effectiveness of

using the pyramid structure. From these results, it was decided to use one level for the two
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Figure 3.4: Robot Arm Image

and four pixel velocities (both x and x & y directions), three levels for both of the ten pixel

velocities, and four levels for the robot arm sequence.

For the undegraded sequences, it is possible to measure the accuracy of the

displacements by the above approach of predicting the next frame. However, this is not the

case when the sequence is degraded. In this situation, the predicted image is formed using

the restored displacements which, being closer to the true displacement, should give an

improved prediction. Therefore, comparing the second image of the degraded sequence

with the predicted (hopefully undegraded) image will not be useful. Therefore, it was

decided to compare the displacements resulting from the filtering with benchmark

displacements calculated from the sequences before degradation.

A second task that was necessary prior to filtering the images and displacements

was to determine the model coefficients Ck.l and the plant noise variance Ow 2 in equation

2.1. These parameters were calculated using least squares parameter estimation, assuming a

1 x 1 x 1 model. The undegraded images and benchmark displacements were
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Table 3.1: Results of Varying the Number of Pyramid

Ima[[e

Circle - 2 pixels vel

I I

Circle - 4 pixels vel

I

Circle - 10 pixels vel

Number of Levels

0

2
I

1 MSE

3.14

2
I

1.40

2.98

16.570

1 4 24

5.01

19.68

2 19.17

3 16.10

4 27.66
ii

Robot Arm 0 441.29

1 260.06

2 123.84

3 73.66
t,

4 52.97

5 85.95

Levels
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used for the computations. The results are shown in table 3.2, with the coefficient

positions shown in figure 3.5. The coefficients were identical for all frames of the circle

image, since the circles only shifted on the background, with all of the circle still in the

frame. Note that the models for the images arc not the same as the models for the

displacements. It is assumed because of linearity, however, that the same degradation

model can be used for the displacement and the images in the sequence. Therefore, the

filtering of the displacements takes the same form as for images, the difference being in the

model parameters.

Three cases for the degradation were used: 20 dB noise, I x 5 known linear blur,

and the combination of the I x 5 blur with 20 dB BSNR. The blur support is the same as

that in figure 2.5. Comparisons are calculated in decibels in a manner similar to the MSE

_dB used in part 2, and are tabulated in tables 3.3 - 3.5. The degraded MSE (between the

benchmark and the displacement from the degraded sequence) is also provided to give an

indication of the severity of the error induced by the degradation.

For the case with noise alone, improvement was obtained for most cases by

filtering the sequence, and in all cases by filtering the displacements. Better performance

was obtained in the latter case, especially at lower velocities. The degraded MSE results

show the increasing effects of the noise as the velocity increases, corresponding to a

decrease in the improvement ohtainahle by the filtering.

In the case with blur alone, neither method produced improvement, but rather

increased the displacement error. Filtering of the displacements produced the most error.

It is also seen from the degraded MSE that, especially at the lower velocities of two and

four pixcls, the effects of the blur on the displacements were less than those from noise

alone.
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x

Figure 3.5: NSHP Support

Table 3.2: Filter Parameters

Image/Disp.

Circle Image

2 pel x disp. - hor.

- veil.

2 pel x7 disp.-hor.

-veil.

4 pcl x disp.- hor.

- veil.

4 pcl xy disp.-hor.

- veil.

I0 pel x disp.-hor.

- veil.

I0 pcl xy disp.-hor.

-veil.

Robot arm -im[ I

Robot arm - im_ 2

Robot disp. - hor.

Robot disp. - veil.

Cll

-.8119

-.I062

-.0190

-.2899

-.2899

-.3704

-.3812

-.5345

-.5827

-.3372

-.3480

c01

.8128

.6227

.3584

.5470

.2770

.4121

.7096

.6139

.2488

.4223

.4461

.4484

.4328

.5922

.6497

.3787

.3889

C-ll

.0696

.0123

.1975

.1735

.2130

.1529

.0412

.1060

.1719

.2149

.2148

.2119

.2164

.1368

.1084

.2430

.2450

Cl0

.9364

.3198

.4039

.4403

.6513

.4627

.3610

.3986

.6797

.7388

.7487

.7284

.7370

.8060

.8251

.7208

.7173

ffw 2

4.7420

.1374

.0861

.1989

.1980

.2694

.4242

.4769

.4695

.8096

.8615

.9909

.9897

11.1393

12.2755

1.5248

1.7415



28

Table 3.3: Results With 20 dB Noise

Sec_uence

2 pel x - horizontal

-vertical

2 pel xy -horizontal

-vertical

4 pelx -horizontal

- vertical

4 pel xy - horizontal

- vertical

10 pel x - horizontal

- vertical

I0 pel xy - horiz.

- vertical

Robot arm - horiz.

Degraded

MSE

1.02

1.04

1.05

1.08

1.12

I.I0

1.21

1.21

22.06

21.59

24.94

28.88

38.56

MSE Improvement rklB

Rest. Seq. Rest. Disp.

• 17 4.77

.45

-.34

7.87

4.19

4.31

2.10

4.18

2.63

2.90

.19

- vertical 36.36 .06 .20
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Table

Set,Hence

2 pel x - horizontal

- vertical

2 pel x_, - horizontal

- vertical

4 pel x - horizontal

- vertical

4 pel xy - horizontal

- vertical

I0 pel x - horizontal

- vertical

I0 pel xy horiz.

- vertical

Robot arm - horiz.

- vertical

3.4: Results With 1 x 5 Blur

Degraded

MSE

.12

.17

.22

.2l

17.50

17.54

__.41

24.03

28.41

MSE Improvement rldB

Rest. Sec[. Rest. Disp.

-.97 -9.54

-11.83

-15.86

- 12.79

-2.08

25.94 -.44 -2.11
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Table 3.5: Results With 1 x 5 Blur Plus 20 dB Noise

Sequence

2 pel x - horizontal

- vertical

2 pel xy - horizontal

- vertical

4 pel x - horizontal

- vertical

4 pel xy - horizontal

- vertical

I0 pel x - horizontal

- vertical

10 pel xy - horiz.

- vertical

Robot arm - horiz.

- vertical

Degraded

MSE

1.04

.97

1.O8

1.0l

1.21

1.08

1.25

1.15

24.26

20.66

29.50

29.22

38.54

37.04

MSE Improvement rld.B

Rest. Seq. Rest. Disp.

-.04

.12

4.37

7.56

3.90

3.92

1.53

3.71

2.05

.24

.11

.21
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Finally, for the case with blur and noise, results were more encouraging.

Improvement was obtained in all cases where the displacements were f'fltered, and in about

half of the cases with the sequences filtered. As in the other two degradation cases, the

results for filtering the displacements were better at lower velocities. However, the reverse

was u'ue for filtering the sequences: the worst cases were those with lower velocities. The

degraded MSE results were similar to those with noise alone.

In addition to using the MSE improvement as a measurement of effectiveness, it

was also useful to have a visual means of examining the displacements. This was done by

scaling the displacements and displaying them as SUN raster images. The scaling was

necessary since the image format truncates the data to integer format. The degraded and

filtered images arc also provided for inspection.

Figure 3.6 shows the first images in the degraded and restored circle sequence.

There is little apparent difference between either the degraded and original images, or the

degraded and restored images, for all the degradation cases. However, we know that the

degradations do have an effect on the displacement calculations, especially at high

velocities. So, even when degradations are not visually obvious, the displacements can

still be affected, particularly at high velocities.

The displacements for the circle sequence are shown in figures 3.7-3.9. For the

noise alone, the effect is clearly seen in the degraded sequence displacements. The restored

sequence displacements and restored displacements are not visibly much improved. The

same is true for the blur plus noise case. It appears that the noise effects are the most

prominent, which is as expected, since the degraded MSE results showed that noise had a

greater effect than blur for the four pixel velocity.

The displacements from blur alone are more interesting. As expected from the

decibel improvements, the degraded displacements are not much different from the
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Figure 3.6: Degraded and Restored Circle Images

a. 20 dB Noise - Degraded

c. 1 x 5 Blur - Degraded

e. Blur & Noise - Degraded

b. 20 dB Noise - Restored

d. 1 x 5 Blur - Restored

f. Blur & Noise - Restored

a

c

e

b

d

f
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Figure 3.7: Circle Displacements for 20 dB Noise

a. Benchmark Displacement - horizontal

c. Degraded Sequence Disp. - horizontal

e. Restored Sequence Disp. - horizontal

g. Restored Displacement- horizontal

b. Same - vertical

d. Same - vertical

f. Same - vertical

h. Same - vertical

a

c

e

g

b
d

f

h
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Figure 3.8: Circle Displacements for 1 x 5 Blur

a. Degraded Sequence Disp. - horizontal

c. Restored Sequence Disp. - horizontal

e. Restored Displacement- horizontal

b. Same - vertical

d. Same - vertical

f. Same - vertical

b

d

f
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Figure 3.9: Circle Displacements for 1 x 5 Blur plus 20 dB Noise

a. Degraded Sequence Disp. - horizontal

c. Restored Sequence Disp. - horizontal

e. Restored Displacement- horizontal

b. Same - vertical a b

d. Same - vertical c d

f. Same - vertical e f
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benchmarks. The restoreddisplacements from both methods show more visiblechanges,

however. In the case of the restoredsequence displacements, errors arc sccn to bc

concentratedin the areaof the circleedges. This seems to indicatethatone cause forthe

lackof improvement over thedegraded sequence displacements could be filteringartifacts

which are oftenpresentnear edges. In thecase of the restoreddisplacements, the lack of

improvement isalsoclearlyshown. The filtcrappears to bc overcompensating in some

fashion. One possibleexplanation isthatthe blurmodel for the displacements does not

correspond tothatof theimages in thescqucncc,as previouslyassumed.

After these firsttrialswcrc completed, further testing was done to scc if

improvements could bc obtained inthosecascs where none was before. The visualresults

forthe I x 5 blurwcrc helpfulintryingtoimprove thatcase. Since theerrorappeared tobc

conccntratcdjustoutsidethe boundary of the circle,where the velocityshould bc zcro,it

was decided totrythrcsholdingthc benchmark displaccmcnts,and only use displacements

above the thresholdinthe comparisons. In thisway, the crroncous data outsidethe circle

isnot considered. The resultsof thrcsholdingdid support thisassumption for most of the

cases. Numerical resultsarc prcscntcd intable3.6. Note thatthe degraded MSE results

shown hcrc arc largerthan thoseobtained when thcerroriscalculatedover the entirefield

(table3.4).This shows thelocalizationof thcerrorncarthc moving circle.

Thrcsholding was also triedwith some of the displacements thatwcrc filtered

directly.While the errordid decrease with thcthrcsholding,itdid not improve beyond that

of thedegraded MSE.

A method discoveredforimproving theresultsforthe filtereddisplacementswas

toconsiderthe erroras noise,and so includea noisevariancein thef'fltcr.This was only

successfulforthe tenpixclvclocitics.Improvements wcrc obtained forthesese.qucnccsin

the caseof bluralone and blurplusnoisc,usinga noisevarianccof 20 forthe bluralone
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Table 3.6: Results of Thresholding the Circle Displacements
(Rest. Sequence), 1 x 5 Blur Case

Ima[e Sequence

2 pel. x - horizontal disp.

- vertical disp.

2 pel xy - horizontal disp.

- vertical disp.

4 pel x - horizontal disp.

- vertical disp.

4 pel xy - horizontal disp.

- vertical disp.

I0 pel x - horizontal disp.

- vertical dis_.

I0 pel xy - horizontal disp.

- vertical disp.

Threshold

.2

1.0
i

9.9

.98

89.04

87.70

156.09

rldB

1.98

1.20

1.40

2.22

1.32

1.58

.14

1.40

-.08

Number of pts.

7207

7392

3604

3604

6O88

6268
i

9065

9235

1844

1457

4286

9.9 142.66 .45 4286

and 21.5 for blur plus noise, as opposed to using a variance of zero. DB results are seen in

table 3.7. These results can be compared with those in tables 3.4 and 3.5.

In the cases where more than one pyramid level was used, as in the ten pixel

velocities and the robot arm sequence, the visual results were not as clear. Due to the

increased number of levels, and also the scaling, the displacement images are much more

blurred in appearance, and the edges of motion cannot be seen. Figure 3.10 shows the

results for the improved ten pixel xy velocity sequence using the extra noise variance, along
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Table 3.7: Filtered Displacement Improvements

Sequence

10 pel x - horizontal disp.

- vertical disp.

10 pel xy - horizontal disp.

- vertical disp.

MSE Improvement rldB

Blur Alone

.39

.88

.88

Blur + Noise

1.05

1.32

1.30

.87 1.12

with the benchmark, degraded and unimproved cases. While the images themselves are not

very meaningful, it is possible to see the differences caused by the filtering. In the case

where no noise is assumed in the filter, the displacements have a much less smooth

appearance when compared with the beJ_chmaz'k image_. In the case where the noise

variance was set at 20, the images have a smoothed appearance closer to that of the

benchmarks.

Figure 3.11 shows examples of the degraded and restored robot arm images. The

visual differences between the original, degraded, and restored images are slightly more

apparent than in the circle images, bt, t are still not great. As in the ten pixel velocity circle

sequence, the robot arm displacement.,,. :is displayed visually, are quite blurred and unclear.

Displacements from the 20 dB noise case :ire shown in figure 3.12. Improvements were

attempted as with the circle sequences, but without success.
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Figure 3.10: Displacements for 10 Pixel xy Velocity, 1 x 5 Blur

a. Benchmark Displacement - horizontal

c. Degraded Sequence Disp. - horizontal

e. Restored Disp. no noise in filter - horiz.

g. Restored Disp. - noise var.= 20 - horiz.

b. Same - vertical a b

d. Same - vertical c d
f. Same - vertical e f

h. Same - vertical g h
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Figure 3.11: Degraded and Restored Robot Arm Images

a. 20 dB Noise- Degraded

c. I x 5 Blur - Degraded

e. Blur & Noise - Degraded

b. 20 dB Noise - Restored

d. 1 x 5 Blur - Restored

f. Blur & Noise - Restored

a

c

e

b

d

f
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Figure 3.12: Robot Arm Displacements for 20 dB Noise

a. Benchmark disp - horiz.

c. Degraded seq. disp. - horiz.

e. Restored seq. disp. - horiz.

g. Restored disp.- horiz.

b. Same - vertical a b

d. Same - vertical c d

f. Same - vertical e f

g. Same - vertical g h



PART 4

Discussion and Conclusions

The goal of this thesis was to investigate the use of the reduced order model

Kalman filter in reducing motion estimation errors due to image degradations, and to

examine the implementation of the filter and motion estimation algorithms on the SUN

workstation. In order to determine the form of the filter for the SUN implementation,

preliminary testing was done to find the optimum state and model configuration. These

tests showed that in general, increasing the state to the left either by increasing the model

or by adding extra states with the minimum model leads to some improvement over the

minimum state. This improvement varies depending on the kind of degradation.

In the motion estimation tests, two methods of applying the ROMKF were used:

filtering the sequences prior to motion estimation, and filtering the displacements from the

degraded sequences directly. The same degradation model was used initially for both

cases. In general, filtering the displacements directly led to greater improvements. The

results varied depending on the type of degradation. For additive noise alone, both

methods gave some improvement for almost all sequences used. The improvements

decreased as the velocities increased. With blur and noise, the restoration of the

displacements gave improvements in almost all cases, while the other method was only

effective in the higher velocity cases. In the cases of restored displacements, the

improvements again decreased as the velocities increased. The reverse was true for the

displacements from the restored sequences.

Finally, the results for the blur alone were quite interesting. Numerically, both

methods increased the displacement error, with the restored displacements being the worst.

Results here improved as the velocities increased for both methods. Visual representations

of the displacements showed a possible cause for the poor performance. For the

42
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displacementsfrom restoredsequences,theerrorwasseen to be concentrated at the object

boundaries, which could be due to artifacts in the images from the filtering process.

Thresholding the displacements when calculating the results showed improvements in

many cases. For the restored displacements, it was possible to obtain improvements by

modelling the displacement error as observation noise in the filter. Improvements were

obtained for the cases with higher known velocities of ten pixels per frame. Applying this

technique also yielded improvements for the case of blur plus noise.

Therefore, it appears that restoring the displacements using the ROMKF on the

displacement fields directly can lead to some improvement when the sequence is

degraded.by noise or blur plus noise. Restoring the images prior to motion estimation also

leads to improvements, but to a lesser de_ee. Both methods fail for blur alone, but since

most real images are noisy to some extent, this is an unlikely case anyway.

Improvements were also obtained in some cases when the degradation model for the

filtered displacements was varied.

The improvements were slight in most cases, so further work needs to be done in

this area. For example, tests can be done with additional lowpass filtering of the

intermediate displacements in the pyramid, as done by Woods and Naveen [12]. Another

option is to further investigate varying the degradation model for the displacements. The

state size for the filter can also be increased, as only the minimum support was used in

these tests.

Another possibility is to t,se adaptive filtering. In these experiments, both the

images and displacements were assumed to be spatially invariant. However, this is not a

good assumption for real images and displacements. Therefore, the use of the adaptive

ROMKF [21 ,which uses multiple models in moving windows, could have increased
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effectiveness. The ROMKI:: can also be extended to color sequences.in the same way that

it was extended to color images [2].

In addition to these proposals, other possibilities involve representing the

sequence using augmented model and observation equations (equations 2.1 and 2.2) which

would contain an added dimension representing the frame index, or time. By incorporating

the displacements as well, simultaneous estimation of the displacements with the sequence

can be done.

Finally, it was mentioned that in many applications, speed is important, as it is

desirable to do the motion estimation in real-time. To increase the speed of the optic flow

estimation and any error compensation used, the algorithms can be implemented on parallel

machines such as the AMT Distributed Array of Processors (DAP).



APPENDIX A

Model and Blur Supports

Case I: l x I x I model
9 states

I

Case 2:1 x 2 x 1 model,
10 states

Case 3:1 x 6 x 1 model,
14 states:

Case 4:6 x 1 x 1 model
16 states:

Case 5:6 x 6 x 1 model,
21 states:

Case 6:1 x 1 x 2 model,
13 states:

Case 7:2 x 1 x 2 model,
15 states:

Case 8:2 x 2 x 2 model,
17 states:

Case 9:3 × 3 x 3 model, 29 states:

Key: = model support

7_ = blur support

'_ = x(m,n)

Figure A.I: 1 x 5 Blur Case, Model Varied

45
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V////_
Case 1:10 states Case 2:14 states

Case 3: 19 states

Case 4:10 states Case 5:14 states

Case 6: 19 states

k_.'_,__'_ I
I V'/_/_.I_

Case 7:19 states

Case 8:29 states

Figure A.2:1 x 5 Blur Case, State Support Varied
with 1 x 1 x 1 Model.

Note: For this and all following figures, the key is the same as for figure A. 1.
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Case9:16 states Case10:1 x 1x 2 model,
19states

Casell" 2x2xlmodel,
19 states

Case 12:2 x 2 x 2 model,
21 states

Case 13: lxlxlmodel,
29 states

Figure A.3:1 x 5 Blur Case, State Support Varied
with 1 x 1 x 1 Model
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I
Casel: lxlxlmodel

12 states
Case 2:1 x 1 x 2 model

13 states

g."////A I

Case 3:1 x 1 × 6 model
17 states

V////,,'A I

Case 4:1 × 6 × 1 model
20 states

V////,,'A I

Case 5:1 x 6 × 6 model
25 states

Case 6:2 x 1 x 1 model
13 states

Case 7:2 x 2 x 2 model
15 states

Case 8:3 x 3 x 3 model
28 states

Figure A.4:3 x 3 Blur Case, Model Varied
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I
Case 1:13 states Case 2:16 states

D
Case 3:22 states

/
1 I _.,'///A I

Case 4:15 states

Case 5:27 states Case 6: 17 states

Case 7:39 states

Case 8:38 states

Figure A.5:3 x 3 Blur Case, State Support Varied
with 1 x 1 x 1 Model



APPENDIX B

The Kaiman Filter Equations

The equations for the Kalman filter are given in this appendix. The derivation can

be found in [4]. Here, the equations have been extended to two dimensions, with one

direction of recursion.

The dynamic model for the state is represented as the following difference

equation:

x(m,n) = Cx(m - l,n) + Eu(m,n) + Dw(m,n)

r(m,n) = Hx(m,n) + v(m,n)

Given these models for x and r, the Kalman f'flter is defined as follows:

,_b(m,n) = C,r,a(m - 1,n) + Eu(m,n)

g.a(m,n) = $.b(m.n) + K(m,n)[r(m,n) - H2;,b(m,n)]

(B.3)

(B.4)

and

wh_e

and

K(m,n) = Pbfm,n)H T [HPb(m,n)HT + R] -1

Pb(m,n) =CPa(m - 1,n)C T + DQD T

Pa(m,n) = [I- K(m,n)H]Pb(m,n)

R = cov(v)

Q ---coy(w_.) .

(B.5)

(B.6)

(B.7)

(B.8)

(B9)

50
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In theaboveequations,P is the covariance matrix of the estimation error, and K

is called the Kalman gain matrix. The equation for K is derived by minimizing the trace of

P. The above Kalman filter estimates the states by predicting the states and error

covariance in (B.3) and (B.6), and using the gain K from (B.5) to update the states and

error covariance in (B.4) and (B.7).
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